张红
发布时间:2017.06.02
来源:
张红,女,博士,二级教授(物理学),博士生导师。四川大学物理学一流学科建设首席科学家(量子科学与新型外场下的物理学)、四川大学物理学拔尖计划首席专家。
张红教授先后荣获国务院政府特殊津贴、四川省学术和技术带头人荣誉称号。现受聘为国务院学科评议组成员(物理学组);教育部物理学类教学指导委员会委员;中国物理学会理事会常务理事;四川省物理学会理事长;中国物理学会凝聚态理论与统计物理专业委员会委员; 中国物理学会表面与界面物理专业委员会委员;四川大学学位委员会委员;四川大学物理学学位分委员会主席;国际物理期刊 Physica B 编委;《物理实验》副主编。
张红教授在四川大学从事科研与教学工作20余年,承担硕博士研究生和本科生《凝聚态理论》、《原子物理学》、《表面物理前沿》等课程,主要从事凝聚态物理基础理论和计算研究, 在飞秒激光与纳米材料相互作用的超快动力学、量子调控及电子激发动力学等方向做了较为深入的研究。在PNAS; Physical Review Letters; Physical Review B; Applied Physics Letters等国际刊物发表SCI收录论文200余篇(其中第一作者及通讯作者160余篇)。 论文包括4篇PRL、1篇PNAS 、40余篇PRB及APL。
张红教授作为项目负责人主持国家重大专项1项、国家重点研发计划1项(参与)、作为负责人主持国家自然科学基金项目5项、主持教育部博士点博士生导师专项科研基金1项、及多项总装预研和国家重点实验室基金; 应邀在国内外重要物理会议上做学术报告50余次;作为会议主席(或Co-Chair)先后主持“中国物理学会2017秋季学术会议”、“第二十届全国凝聚态理论与统计物理学术会议”、“第二届国际表面等离激元前沿研讨会”、“第四届国际量子能源探讨会”等国内外物理学术会议10余次。 2006-2022年先后在美国、日本、英国、德国、法国、瑞士、芬兰、澳大利亚、西班牙、新加坡等做学术交流及科研合作。
张红教授作为项目负责人获得教育部拔尖计划2.0重点课题1项、四川省虚拟仿真一流课程1项、作为负责人完成四川省教育厅及四川大学新世纪教学教改项目4项,以第一及通讯作者发表教改论文11篇(含两篇英文);作为独著编写全英文教材1本(高等教育出版社)。
分别荣获:国务院政府特殊津贴、四川省学术和技术带头人、宝钢优秀教师奖、四川省优秀教学成果一等奖、四川省优秀教学成果二等奖、四川大学教学名师、四川大学青年骨干教师、四川大学课程思政优秀奖等.
联系方式:
邮箱:hongzhang@scu.edu.cn
电话:028-85410238
Dr. Hong Zhang is the dean of College of Physics, Sichuan University, now she is a full professor in physics department of Sichuan University. She received her PhD from Sichuan University,
Prof. Hong Zhang has published over 200 publications in PNAS; Physical Review Letters; Physical Review B; Applied Physics Letters; Nanoscale and other scientific journals.
Contact information:
E-mail: hongzhang@scu.edu.cn;
Tel: 028 85410238
Main Research Interests:
1. Interaction between short-pulse laser and surfaces (including nanotubes and graphene)
2. Theoretical study of nano-structure and multiscale modeling
3. Structure and dynamic properties of surfaces and interfaces
Selected Publications (*presents corresponding author)
1. Hong Zhang, et al, Physical Review Letters, 109,265505, 2012
Ab-initio simulation of helium ion microscopy images: The case of suspended grapheme
2. Y. Miyamoto, Hong Zhang*, et al, Physical Review Letters, 114, 116102, 2015 Modifying the interlayer interaction in layered materials with an intense infrared laser
3. Y. Miyamoto*, Hong Zhang*, A. Rubio*, Physical Review Letters, 105, 248301, 2010
Chemical reactions in HCl molecule embedded nanotube induced by ultrafast laser pulses
4. Y. Miyamoto, Hong Zhang*, D. Tomanek, Physical Review Letters, 104, 208302, 2010
Photoexfoliation of graphene from graphite
5. Y. Miyamoto, Hong Zhang, A. Rubio, PNAS, 109, 8861, 2012
Pulse-induces non-equlibrium dynamics of acetylene inside carbon nanotube
6. Hong Zhang*, et al, Nanoscale, 7,19012, 2015
Optical Field Terahertz Amplitude Modulation by Graphene Nanoribbons
7. Hong Zhang, et al, Physical Review B (Rapid Communication), 85, 201409, 2012
Preferential Dehydrogenation from One-side of Graphane by laser Pulse
8. Hong Zhang, et al, Physical Review B 85, 033402, 2012
Graphene production by laser shot on graphene oxide: An ab initio prediction
9. Hong Zhang, et al, Physical Review B 78, 045436, 2008
Stability, structure, electronic properties of chemisorbed oxygen and thin surface oxides on Ir
10. Hong Zhang*, et al, Applied Physics Letters, 111, 253303, 2017
Detection of coherent electron dynamics in benzene and polycyclic benzene by two
anti-phase pulses:An ab initio study
11. Hong Zhang, et al, Applied Physics Letters, 95, 053109, 2009
Modulation of alternating electric field inside photoexcited carbon nanotubes
12. Y.Miyamoto, Hong Zhang*, et al, Physical Review B, 99,165424, 2019
Ab Initio simulation of laser-induced water decomposition in the presence of carbon nanotubes
13. Y Miyamoto*, Hong Zhang*, et al, Physical Review B, 96, 115451, 2017
Modeling of laser-pulse induced water decomposition on two-dimensional materials by simulations based on the time-dependent density functional theory
14. Y.Miyamoto, T. M, A. Rubio, Hong Zhang*, Applied Physics Letters, 104, 201107, 2014,
Photo-induced hardening of the weak bonds of nobel gas dimmer.
15. Jiahe Lin, Hong Zhang*, et al, Physical Review B, 94,195404, 2016,
Novel two-dimensional wide-band-gap nitride semiconductors: single-layer 1T-XN2
16. XQ Shu, Hong Zhang*, et al, Physical Review B, 93, 195424, 2016
Tunable plasmons in few-layer nitrogen-doped graphene nanostructures: A time-dependent density functional theory study
17. JH Lin, Hong Zhang*, et al, Physical Review B in press, 2017
Single-layer group IV-V and group V-IV-III-VI semiconductors: structural stability, electronic structures, optical properties and photocatalysis
18. W Wang, Hong Zhang, et al, Applied Physics Letters, 110, 151101, 2017,
Field-level characterization of the optical response in J-aggregate/metal hybrid nanostructures by chirp-compensated spectral interferometry
19. GQ Yan, Hong Zhang, et al, Physical Review B 93, 214302, 2016
Different effects of electronic excitation on metals and semiconductors
20. HF Yin, Hong Zhang*, Applied Physics Letters, 101, 061906, 2012
Quantum mechanical study of plasmonic coupling in sodium nanoring dimmers
21. Y. Miyamoto, Hong Zhang, Physical Review B 77, 165123, 2008
Testing the numerical stability of time-dependent density functional simulations using the Suzuki-Trotter formula
22. Y. Miyamoto, Hong Zhang, Physical Review B(Rapid Comm.), 77, 161402, 2008
Electronic Excitation In an Ar Ion Transversing A Graphene Sheet
23. Y. Miyamoto, Hong Zhang, Physical Review B 77, 045433, 2008, Calculating interaction between a highly charged high-speed ion and a solid surface
24. Hong Zhang,et al, Acta Physica Sini. (invited paper), 64, 057300, 2015, Surface plasmon research progress based on time-dependent density functional theory
25. Hong Zhang, W.X. Li, J. Phys. Chem. C 113, 21361, 2009
First-principles investigations on hydrogen adsorption and potential energy on Ir(111) surface
26. Hong Zhang, et al,Applied Surface Science, 254, 7655, 2008
Al Adsorption on Ir(111) at a Quarter Monolayer Coverage: A First Principles Study
27. Hong Zhang*, HF Yin, Inter. J. Quan. Chem., 113 2200, 2013
Plasmon resonances and plasmon-induced charge transport in linear atomic chains
28. Hong Zhang, XL. Cheng, S. Chiesa, Inter. J. Quan. Chem., 111, 4452, 2011
QMC calculations of bond dissociation energies for some nitro and amino molecules
29. Hong Zhang, et al, Front. Phys (review paper). 6, 231, 2011
DFT study of dihydrogen interactions with lithium containing organic complexes
30. Hong Zhang, et al, Inter. J. Quan. Chem., 109, 720, 2009
First-principles study on structure and electronic properties of Nitrimino nitroimidazolidine
31. Hong Zhang, F. Cheung, Inter. J. Quan. Chem., 109, 1547, 2009
Band Gaps and the Possible Effect on Some Nitro Aromatic Explosive Materials
32. Hong Zhang, F. Chen, et al, J. Mole. Struc.: THEOCHEM 857, 33, 2008
Structural and Electronic properties of 2,4,6-trinitrophenol
33. Hong Zhang*, et al, Chinese Physics Letters , 25, 552, 2008
Structural, electronic properties and Chemical Bonding of Li4CaB2O6 under high pressure
34. Hong Zhang*, et al, Physica Status Solidi (b), 24,37, 2008
DFT studies on thermodynamic properties of Na2Ti3O7 under high temperature and pressure
35. Hong Zhang*, et al, Chinese Physics, 15, 0428, 2006
Molecular dynamics study of the ternary compound Li3AlB2O6
36. Hong Zhang*, et al, Chinese Physics Letters, 2003
Analysis of Charge state Distribution
37. He Su, Xinlu Cheng, Bridgette Cooper, Jonathan Tennyson, Hong Zhang*, PHYSICAL REVIEW A105, 062824 (2022), Electron-impact high-lying N2 − resonant states
38. Liu Xiangyue, Hong Zhang*, Applied Surface Science 542 (2021) 148659, Tunable electronic properties of two-dimensional type-I 1T-SN2/hBN and type-II 1T-XN2/hBN (X=Se, Te) van der Waals heterostructures from first-principle study
39. Yonggang Wu, Jihua Zhang, Bingwei Long, Hong Zhang*, Applied Surface Science, https://doi.org/10.1016/j.apsusc.2021.149053,2021, Thermodynamic stability and electronic structure properties of the Bi2WO6 (001) surface: first principle calculation.
40. Srinivas Gadipelli,* Christopher A. Howard, Jian Guo, Neal T. Skipper, Hong Zhang, Paul R. Shearing, and Dan J. L. Brett,Advanced Energy Materials,19036492, 2020,Superior multifunctional activity of nanoporous carbons with widely tuneable porosity: enhanced storage capacities for carbon-dioxide, hydrogen, water and supercapacitor