左浩毅
发布时间:2022.08.05
来源:
左浩毅,教授,博导,入选四川省学术技术带头人、巴渝学者等人才计划;光散射学报副主编,编辑部主任。主持国家自然科学基金、教育部博士点优秀人才基金、四川省科技厅项目以及横向课题等。重点开展新型光学成像前沿研究,具体方向包括:
1、散射成像:利用光场调制器,如DMD和SLM等,对入射光场进行主动预调制以克服强散射重建3D物象,或者将强散射光场整形为物函数分布以实现光学真3D成像。
2、散射光场控制:通过光场调制,将相干散射光场塑造为目标光场,以实现克服强散射的信号、图像、视频传输。
3、经典鬼成像:课题组在鬼成像领域的研究不再局限于光强的二阶关联。光强关联只能获得目标物体强度分布信息,无法获得复振幅分布信息。目前我们重点研究光场的奇数阶关联,可以获得物体的复振幅信息,从而实现抗强干扰,甚至非侵入式的真3D成像。
4、量子成像:基于量子纠缠的鬼成像。
5、散射辅助的计算全息:目前主流计算成像视场角一般很小,通常不到1°,原因在于调制器(如DMD和SLM)的像素较大,衍射角较小。而借助恰当的散射介质,如高目毛玻璃等,可以大大增加衍射角,从而有望获得大视角全息像,视角有望扩大到接近360°。
6、太赫兹鬼成像:将太赫兹成像与鬼成像相结合,可取长补短,是一个很前沿的成像课题。
7、结构光3D成像: 将有一定规律的光强分布投射到待成像3D物体上,使用相机记录物体表面光场的畸变情况,再依据一定的算法可以解析出物体的3D信息(但与前述真3D像有所不同)。该方向有着强烈的应用背景。
各研究方向都有完善的实验平台作为支撑,各平台可独立开展实验(见下图)。实验室氛围自由,可在大方向之中选择感兴趣的小方向,亦鼓励学生自主提出新的研究课题。长远规划是立足于成像的大方向,引入机器学习等辅助手段,兼顾基础研究与应用研究,深入对新型成像的研究。
实验室处于成长阶段,长期招收对光学研究有真兴趣的硕士生和博士生,也招收参加科训的本科生。不看重论文数量,追求论文质量;强调实验动手能力的锻炼,兼顾理论基础的培养。内部人员结构简单,关系单纯,做好纯粹的科研和培养人才是根本目的。
联系方式:zuohaoyi@scu.edu.cn,13340963802(微信同号)
课题组光学净化间
课题组发表部分论文:
[1] Anti-scattering optical information transmission based on iterative wavefront shaping in perturbation environment, Results in Physics, 2023
[2] A simple method to modulate the scattered light field under strong disturbance, OPT LETT, 2022
[3] Fully continuous spiral phase plate for ultraintense optical vortices, OPT LETT, 2023
[4] Hybrid resonance metasurface for a lithium niobate electro-optical modulator, OPT LETT, 2022
[5] Controlling a scattered field output of light passing through turbid medium using an improved ant colony optimization algorithm, Optics and Lasers in Engineering, 2021
[6] Wavefront shaping using improved sparrow search algorithm to control the scattering light field, OPT LASER TECHNOL, 2022
[7] Application and influencing factors analysis of Pix2pix network in scattering imaging, OPTICS COMMUNICATIONS, 2023
[8] Detailed study on ill-conditioned transmission matrices when focusing light through scattering media based on wavefront shaping, APPLIED PHYSICS B-LASERS AND OPTICS, 2020
[9] Improve the precision and accuracy of retrieval of particle size-distribution based the unconstrained linear regression, OPTIK, 2019
[10] Adjustment of laser scattering focus with machine learning, LASER PHYSICS, 2018
[11] Focusing light through random scattering media by simulated annealing algorithm, JOURNAL OF APPLIED PHYSICS, 2018
[12] Particle swarm optimization to focus coherent light through disordered media, APPLIED PHYSICS B-LASERS AND OPTICS, 2018
[13] Image reconstruction through thin scattering media by simulated annealing algorithm, Optics and Lasers in Engineering, 2018
[14] Retrieval of NO2 density using diffused solar radiation from buildings, OPTIK, 2018
[15] Binary wavefront optimization using particle swarm algorithm, LASER PHYSICS, 2018
[16] Binary wavefront optimization using a simulated annealing algorithm, Applied Optics, 2018
[17] Analysis of charge-exchange spectroscopy data by combining genetic and Gauss-Newton algorithms, J QUANT SPECTROSC RA, 2015
[18] Influence of cell length on retrieval of particle size-distribution based on light scattering, Optics and Lasers in Engineering, 2014
[19] Improve the accuracy of retrieval of the particle size-distribution by combining the laser scattering method and the extinction method, LASER PHY LETT, 2012
[20] Discussion concerning ill-conditioned kernel matrices when retrieving particle size distributions based on scattered radiation distribution, J OPT SOC AM, 2012
[21] Improve the precision and accuracy of retrieval of particle size-distribution based the unconstrained linear regression, J OPT SOC AM-B, 2012
[22] Detailed study on the role of forward scattering in particle sizing based on spherical particle model, J QUANT SPECTROSC RA, 2013
[23] Retrieve the aerosol size-distribution by using a “combined model”, OPT LASER TECHNOL, 2010
[24] Comparison of Aerosol Size-Distributions Using Linear-Regression, Genetic Algorithm and Annealing Genetic Algorithm, ENVIRON ENG SCI, 2011
[25] Improving the accuracy in retrieving particle size distribution using multi-wavelength scattering, J MOD OPTIC, 2012
[26] A technique to improve the precision of retrieving the aerosol size-distribution,OPT LETT,2010
[27] Selecting appropriate wavelengths to improve the precision of retrieving the aerosol size-distribution, J QUANT SPECTROSC RA, 2010
[28] Equiangular method: a technique of multiaxis DOAS, J OPT SOC AM-B, 2009
[29] Retrieving the vertical column density of NO2 by using multiaxis differential optical absorption spectroscopy technique, JOURNAL OF APPLIED PHYSICS, 2009